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Abstract. We study the quantum dynamics of a particle interacting harmonically with conical
singularities that physically correspond to either a cosmic string, a global monopole, a magnetic
flux string or a screw dislocation, by solving the corresponding Schrödinger equations. Exact
expressions for the energy eigenfunctions and eigenvalues are found.

1. Introduction

The study of quantum systems with non-standard boundary conditions has been an exciting
research field in recent years. For example, many authors have studied the quantum dynamics
of a particle interacting with a wedge. Recently, Crandall [1] and DeWitt-Morette [2] evaluated
the propagator for a free particle interacting with a rational wedge. Cheng [3, 4] studied the
quantum dynamics of a particle interacting harmonically with a wedge. In another paper,
Zhu [5] investigated the dynamics of a harmonic oscillator in the presence of a magnetic flux
that passes through the plane at the equilibrium point of the motion. In this work we analyse
the quantum dynamics of a particle subjected to non-trivial boundary conditions, which are
imposed by conical singularities in different physical contexts.

The purpose of this paper is to investigate the quantum dynamics of a single particle
interacting harmonically with a topological defect. These defects are characterized by a
spacetime metric with a Riemann–Christoffel curvature tensor and/or torsion tensor which
is null everywhere except on the defects, that is, by the conical type of curvature or torsion
singularities [6, 7]. Some examples of curvature conical singularity topological defects are
cosmic strings [8] and global monopoles [9]. An example of torsion conical singularity is the
cosmic dislocation [10]. These defects appear naturally in gauge theories with spontaneous
symmetry breaking and may have played important roles in the formation of the large-scale
structure of the universe [8]. They are also important in the context of the geometrical theory
of defects in solids [11, 12, 17].

A quantum particle is considered in each of the following background spacetimes: a
cosmic string, a magnetic flux string, a global monopole and a cosmic dislocation. We
consider a harmonic interaction potential between the particle and the defect. This model
is a pedagogical approach for the study of the influence of conical singularities in the quantum
dynamics of a single particle. It also is motivated by the possibility of using the vibrational
spectroscopy of diatomic molecules as an (approximate) probe for topological defects in the
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cosmos. Probes such as these have been suggested earlier, for example, using Rydberg atoms
[13], Lamb shifts [14] and the energy shifts of hydrogen atoms [15].

This paper is organized as follows. In section 2 we obtain exact solutions of the
Schrödinger equation (SE) for a two-dimensional harmonic oscillator interacting with a cosmic
string; in section 3 with a magnetic flux string; in section 4 we obtain exact solutions of the SE
for a three-dimensional harmonic oscillator interacting with a global monopole. In section 5
we analyse a two-dimensional harmonic oscillator interacting with a cosmic dislocation and,
finally, in section 6 we summarize our main results.

2. Harmonic oscillator in the presence of a cosmic string

The line element corresponding to the cosmic string spacetime is given in cylindrical
coordinates by [8]

ds2 = dt2 − dρ2 − α2ρ2 dϕ2 − dz2 (1)

where ρ � 0 and 0 � ϕ � 2π , the parameter α = 1 − 4Gµ and µ is the linear mass density.
This metric has a cone-like singularity at ρ = 0. In other words, the curvature tensor of the
metric (1), considered as a distribution, is of the form

R12
12 = 2π

α − 1

α
δ2(ρ) (2)

where δ2(ρ) is the two-dimensional Dirac δ-function. This fact characterizes a two-
dimensional conical singularity.

Let us consider a non-relativistic quantum particle embedded in a classical background
field. Its behaviour is described by the Schrödinger equation [16]

i
∂�(q, t)

∂t
= − 1

2M
��(q, t) + V (q) (3)

where m is the mass of the particle and we choose units such that h̄ = 1. The symbol � is the
Laplace–Beltrami operator

� = 1√
g
∂i

(
gij√g∂j

)
g = det|gij | and the Latin indices run over the space coordinates only. The Schrödinger
equation in the metric (1) is of the form

i
∂�

∂t
= − 1

2M

[
1

ρ
∂ρ(ρ∂ρ) + ∂2

z +
1

α2ρ2
∂2
ϕ

]
� + V (ρ)� (4)

where V (ρ) is a cylindrically symmetric interaction potential assumed to be

V (ρ) = 1
2mω2ρ2. (5)

Using the change of variables σ = γρ2 and assuming for the eigenfunction the form

� = e−iEt+i ϕ+ikze−σ/2σ | |/2αR(σ) (6)

which satisfies the usual asymptotic requirements and finiteness at the origin for a bound state,
we have

σ
d2R

dσ 2
+

[(
1 +

| |
α

)
− σ

]
dR

dσ
−

[(
1 +

| |
α

)
− A

2γ

]
R (7)

where γ 2 = M2ω2 and A = −2ME + k2.
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We find that the solution of equation (7) is the degenerated hypergeometric function

R = F

(
a,

| |
α

+ 1; γρ2

)
(8)

where a = (1 + | |/α − A/2γ ). In order to have normalization of the wavefunction, the series
in (8) must be a polynomial of degree n, therefore

a = −n. (9)

With this condition, we obtain discrete values for the energy given by

E = ω

(
2n +

| |
α

+ 1

)
+

k2

2M
(10)

where n = 0, 1, 2, . . . .
The energy eigenfunction is then given by

� = Cn ρ
| |/2αeikzei ϕe−γρ2/2

1F1

(
−n,

| |
α

+ 1, γρ2

)
(11)

where Cn is a normalization constant. It is easy to see that the presence of the parameter α
breaks the degeneracy of the energy levels. In the limit of α → 1 equation (10) gives the usual
two-dimensional harmonic oscillator levels. Our results agree with those found by Cheng [3]
and Cheng and da Luz [4] who studied a quantum particle in the presence of a wedge using
path integrals. Note that the boundary conditions imposed by the cosmic string are identical
to those determined by the wedge, namely

�(ρ, 0, z) = �(ρ, 2πα, z)

for a wedge of dihedral angle 2π(1 − α).

3. Harmonic oscillator in the presence of a magnetic flux string

Now, we proceed as in the previous case to study a charged harmonic oscillator in the presence
of a magnetic flux cosmic string. We consider that the internal magnetic field is of the form

A(ρ) = �

2πα

1

ρ
êϕ (12)

where � is the magnetic flux of the string. Using minimal coupling, the time-independent
Schrödinger equation for the harmonic oscillator is in this case[
−1

2

{
1

ρ

∂

∂ρ
ρ

∂

∂ρ
+

∂2

∂z2
+

1

α2ρ2

∂2

∂ϕ2

}
− iq�

πMα2ρ2

∂

∂ϕ
+

�2

8π2α2ρ2M
+

1

2
Mω2ρ2

]
ψ = Eψ

(13)

where q is the charge of the particle.
By using again the change of variables σ = γρ2 and assuming for the eigenfunction the

form

ψ = exp[ikz + i ϕ]e−σ/2σ (| |+q�/2π)/2αu(σ ) (14)

we have

σ 2 d2u

dσ 2
+

[
1 +

| | + q�/2π)

α
− z

]
du

dσ
−

[
1 +

 + q�/2π |
α

+
C2 − k2

2γ

]
u = 0 (15)

where C2 = 2ME and γ 2 = m2ω2.
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As before, we find that the solution of equation (15) is the degenerate hypergeometric
function

u = F

(
a,

| + q�/2π |
α

+ 1; γρ2

)
(16)

where a = (
1+ | +q�/2π |

α
− (k2−C2)

2γ

)
. Again, in order to have normalization of the wavefunction,

the series in (16) must be a polynomial of degree n. Therefore, we must impose

a = −n. (17)

With this condition we obtain discrete values for the energy levels given by

E = ω

(
2n +

| + q�/2π |
α

+ 1

)
+

k2

2m
(18)

with n = 0, 1, 2, . . . . The energy eigenfunction is given by

ψ = Cn ρ
(| +q�/2π |)/2α eikz ei ϕ e−γρ2/2 F

(
−n,

| + q�/2π |
α

+ 1, γρ2

)
(19)

where Cn is a normalization constant. Note that the inclusion of the magnetic flux � breaks
the degeneracy of the energy levels further.

4. Harmonic oscillator in the presence of a global monopole

Barriola and Vilenkin [9] have shown that the effects produced by a global monopole in the
geometry can be approximately represented by a solid angle deficit in (3 + 1)-dimensional
spacetime. The metric of this manifold can be expressed by the line element, in spherical
coordinates,

ds2 = −dt2 +
dr2

α2
+ r2

(
dθ2 + sin2 θ dϕ2

)
(20)

where the parameter α2 = 1 − 8πGν2 is smaller than 1 and depends on the energy scale
ν. The area of a sphere of unit radius in this manifold is not 4π but 4πα2, and the surface
θ = π/2 presents the geometry of a cone with deficit angle λ = 8πGν2. This is an example
of a three-dimensional conical singularity in the spacetime metric. The curvature tensor of the
metric (20) is of the form

R
θϕ
θϕ = α2 − 1

α2
r−2. (21)

The time-independent Schrödinger equation in the metric (20) is described by

− 1

2m

{
α2

r2

d

dr

(
r2 d

dr

)
− L2

r2

}
ψ + 1

2mω2r2ψ = Eψ (22)

where L2 is the angular momentum squared operator.
We assume for the eigenfunction the form

ψ = CYm
 (θ, ψ)R(r) (23)

and the change of variables σ = r2, obtaining

σ 2 dR

dσ 2
+

3

2
σ

dR(σ)

dσ
+

(
1
4Kσ − 1

4γ σ
2 − 1

4D
)
R(σ) = 0 (24)
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with K = 2mE/α2, γ = m2ω2/α2 and D =  ( + 1)/α2. We find that the solution of
equation (24) is the hypergeometric function

R(σ) = F

(
a, 1 +

√
α2 + 4 ( + 1)

2α
, σ

)
(25)

with

2a = γ − K

4α
. (26)

In order to have normalization of the wavefunction (25) we impose

a = −n. (27)

This condition determines the discrete values for the energy to be given by

E = ω

α

(
2n +

√
α2 + 4 ( + 1)

2α
+ 1

)
. (28)

The energy eigenfunction is given by

ψ(r, θ, ϕ) = C n, Y
m
 (θ, ϕ)F

(
a, 1 +

√
α2 + 4 ( + 1)

2α
, r2

)
(29)

where C n is a normalization constant.
Note that the parameter α breaks the degeneracy of the energy levels. In the limit α → 1

the energy levels coincide the usual three-dimensional harmonic oscillator levels.

5. Harmonic oscillator in the presence of a screw dislocation

In this section we investigate a harmonic oscillator in a background field of cosmic dislocation.
The line element of this defect is given in cylindrical coordinates by

ds2 = −dt2 + dρ2 + ρ2 dϕ2 + (dz + β dϕ)2 (30)

with ρ � 0 and 0 � ϕ � 2π . The parameter β is related to torsion. In the language used in
crystallography β is related to the Burgers vector. This metric contains a conical singularity in
the torsion tensor. The torsion associated with this defect corresponds to a conical singularity
at the origin. The only non-zero component of the torsion tensor in this case is given by the
2-form

T 1 = 2πβδ2(ρ) dρ ∧ dφ (31)

where δ2(ρ) is the two-dimensional delta function in flat space. The three-dimensional
geometry of the medium, in this case, is characterized by non-trivial torsion, which is identified
with the surface density of the Burgers vector in the classical theory of elasticity. In this way,
the Burgers vector can be viewed as a flux of torsion, given by∫

6

T 1 =
∮
S

e1 = 2πβ = b (32)

where we adopt the following triad representation (1-form basis) for the metric (30)

e1 = dz + β dφ (33)

e2 = dρ (34)

e3 = ρ dφ (35)



5518 C Furtado and F Moraes

and the torsion 2-form is related to the triad by

T = de + Γ(L) ∧ e (36)

where Γ(L) is the Lorentz connection, which is zero for this geometry since there is no curvature
involved. This equation leads to the result (31) when we substitute (33)–(35) into it. We write
the torsion in tensor notation

T a
µν = ∂µe

a
ν − ∂νe

a
µ (37)

where the 2-form component T a = T a
µν dxµ ∧ dxν and the triad component ea = eaµ dxµ.

The Schrödinger equation for the harmonic oscillator in the metric (30) is expressed by{
− 1

2m

[
∂2

∂z2
+

1

ρ2

(
∂

∂ϕ
− β

∂

∂z

)2

+
1

ρ

∂

∂ρ
ρ

∂

∂ρ

]
ψ + 1

2mω2ρ2ϕ

}
= Eψ. (38)

Using the following ansatz

ψ(ρ, ϕ, z) = exp[ ϕ + ikz]e−σ/2σ | −βk|/2u(σ) (39)

where  and k are constants, and σ = γρ2, we have

σ
d2u(σ)

dσ 2
+ [1 + | − βk| − σ ]

du(σ)

dσ
−

(
A

2
√
γ

+ 1 + | − βk|
)
u(σ) (40)

where A = k2 − 2mE and γ = m2ω2.
We find that the solution of equation (40) is the degenerated hypergeometric function

u = F
(
ζ, | − βk| + 1, 1

2 (mωρ2)
)

(41)

with a = | − βk| + 1 − A/2
√
γ . Setting ζ = −n, as before, to make the eigenfunction

normalizable we have

E = ω(n + | − βk| + 1) +
k2

2m
. (42)

The eigenfunction is then given by

ψ = Cn ρ
| −βk|eikzei ϕc−γρ2/2F(−n, | − βk| + 1,mωρ2) (43)

where Cn,e is a normalization constant.
The conical singularity introduces into this problem the parameter β. This parameter also

leads to a breaking of degeneracy of the energy levels of the oscillator. This parameter is due
to the torsion associated with the defect, therefore the torsion provokes the observed break of
degeneracy.

6. Concluding remarks

In this work we study the behaviour of a quantum oscillator in the presence of conical
singularities. We investigate the quantum dynamics of a single particle interacting
harmonically with a conical singularity. The presence of defects in all cases break the
degeneracy of the harmonic oscillator. It is suggested that these results may be utilized as
a method of detection of cosmic defects and also of defects in solids. This complements recent
studies [17–19] on the influence of the geometry and topology of defects on the quantum
dynamics of a free particle.
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